

Achieving Energy System Integration and Interaction

Intelligent Market Design—Boosting Global Smart Grid Deployment

CEM9 May 23, 2018 Malmo National Renewable Energy Laboratory Operating Agent for the 21CPP

Brazil

Finland

China

India (co-lead)

Denmark

Mexico

South Africa

United States (co-lead, under review)

(co-lead)

Spain

National Renewable Energy Laboratory in Colorado

BACKGROUND: 21CPP OBJECTIVES:

POWER SYSTEM TRANSFORMATION

KEY AREA OF FOCUS

United States (co-lead, under review)

India (co-lead)

Denmark

Mexico (co-lead)

South Africa

Spain

Finland

21CPP WORK STREAMS

- Annual Program of Work Includes:
- "Thought-Leadership" studies that focus on generic **power system transformation** topics across the world
- In-country technical assistance, often as part of a larger development assistance effort, focused on policy, regulatory, and technological progress; grid integration studies often highlight this work.
- Information exchange, capacity building, fellowship programs, and other exercises to share lessons-learned and knowledge transfer.

China

Brazil

South Africa

Spain

United States (co-lead, under review)

India

(co-lead)

Denmark

Finland

Mexico (co-lead)

WHY IS GRID INTEGRATION IMPORTANT?

- Wind and solar are **variable** the wind and sunlight change.
- Wind and solar energy are uncertain

 we can forecast them reasonably well for time periods ranging from minutes, hours, a few days.
- **Grid integration** is the practice of developing efficient ways to deliver high penetration levels of variable RE to the grid.
- The variable and uncertain nature of wind/solar require additional power system flexibility...

China

Brazil

India

(co-lead)

South Africa

Spain

United States (co-lead, under review)

Denmark

Finland

Mexico (co-lead)

Goal: help guide states, regions, and countries address typical questions:

- What is the optimal mix of generation resources under various scenarios of policy, technology pathways, fuel prices, etc.?
- How can we add wind and solar in a cost-effective manner?
- What is the capacity value of RE? How can we still have a reliable grid?
- Where should we locate generation and transmission?
- What operational and technology changes are needed to ensure an economic and reliable grid?

SOLUTIONS TO GRID INTEGRATION **CHALLENGES**

- Utilize geographic diversity.
- Utilize flexible conventional generation.
- Increase sharing among balancing authority areas.
- Expand the transmission system.
- Curtail excess VRE production.
- Coordinate flexible loads (active demand response).
- Enhance VRE and load forecasting.
- Add electrical storage.
- Interact with other energy carriers.

China

Mexico South Africa (co-lead)

Spain

United States (co-lead, under review)

India (co-lead)

Denmark

Finland

TOOLKIT TO ENABLE VRE GRID INTEGRATION AND RELATIVE COSTS

United States (co-lead, under review)

KEY BUILDING BLOCKS FOR GRID INTEGRATION

Ambition and Confidence	Deployment and Capacity Building	Grid Infrastructure	Short-term System Flexibility	Long-term System Performance
This area refers to actions	This area refers to actions	This area refers to actions	This area refers to	This area refers to
related to developing	related to supporting and	related to the changes	actions related to	actions related to
visionary renewable	incentivizing the	needed to grid	increasing the ability	improving the long
energy targets and goals	deployment of variable	infrastructure for power	of the power system	term e.g. days or
and building political,	renewable energy	system transformation and	to balance load and	years performance of
public, and private sector	including financial support	renewable energy	generation in the	the power system to
support for those goals	and simplified procedures	integration. This can	short term, e.g.	operate more
along with power system	for siting, interconnection,	include actions such as	minute and hour	efficiently and
transformation and	permitting, financing, etc.	expanded balancing areas	timescales. The	reliability and with
renewable energy	It also refers to actions to	which can require physical	actions relate to	more renewable
integration. This area also	build private sector	and market integration,	changes to markets	energy. This includes
includes advocacy and	market capacity such as	transmission and	and generation such	actions such as re-
analysis that validates	training, education, and	distribution system	that the power system	design of markets,
plus builds confidence in	standardization to reduce	expansion/upgrades,	is able to better	long term resource
the goals along with	risk and costs as well as to	renewable energy grid	manage the short	adequacy planning,
demonstration programs	increase the speed and	zones, and changes to	term variability of	and grid integration
designed to help further	scale of VRE deployment.	markets to reduce	renewable energy by	studies
build support and		congestion on the grid.	incentivizing or	
confidence.			mandating	
			adjustments to	

Brazil

China

 \bigcirc

India

(co-lead)

South Africa

Denmark

Finland

Mexico (co-lead)

generation and load.

Spain

GOOD PRACTICES FOR VRE GRID INTEGRATION

VRE Integration Area	Good Practices	Possible High Impacts Interventions
Deployment and Capacity Building	Dispersion and diversification of VRE	 Conduct predevelopment work to encourage VRE in target locations Promote policies to incentivize diversified VRE resources
	Simple, open, and fast processes	 Improve existing procedures for permitting, interconnection, and siting
Grid Infrastructure	VRE grid support and codes	 Promulgate rules for VRE generators to provide grid support capability Develop markets to incentivize grid support or requirements to mandate it
	Designated transmission zones	 Develop and promote strategy for RE zones based on resources and existing generation and transmission infrastructure
	Expanded balancing areas	 Develop and promote strategy to expand balancing areas
	Coordinated generation and grid planning with public engagement	 Coordinate and develop plans to jointly build generation and transmission while engaging in public outreach to build support
Short term system flexibility	Economic Dispatch of VRE	Promote enforcement and execution of economic dispatch policies
	Accurate VRE Forecasting	 Improve forecasting accuracy and develop foresting requirements
	Higher resolution dispatching	 Illustrate benefits of faster dispatching and promote adoption
	Demand side management	 Illustrate benefits of demand response, promote adoption, and develop demonstration programs
	Flexible conventional generation	 Promote investments in conventional generation fleet to improve flexibility Develop markets to reward flexibility or requirements to mandate flexibility
Long term system performance	Grid integration studies	 Conduct vision and technical integration/market design studies to build confidence and ambition for more RE deployment
	Efficient system and market design informed by analysis	 System and market improvement insights to raise ambition for deeper VRE deployment across broad landscape of policy issues

 \bigcirc

Brazil

Finland

China

India (co-lead)

Denmark

Mexico (co-lead) Spain

United States

South Africa

(co-lead, under review)