Energy Market Design in the Smart Grid Era

Liu Yang

Senior Research Fellow

Smart grid= grid + digital ?

> Sub-Saharan Africa is connected — not to electricity, but to **digital networks**

System integration is essential

> Smart grid means a digitally-enhanced, multidirectional and integrated system.

National University of Singapore

Source: IEA (2017)

More renewables, more flexibility

> Turning intermittent energy into baseload power

Global cumulative installed capacity:

2016

Global cumulative installed capacity:

2040

Demand response enabling system wide flexibility

➤ Ability to shift demand= ability to reduce or avoid costs (Global demand response programmes can provide 185 GW of flexibility and avoid USD 270 billion of investment in new electricity infrastructure.)

The future is distributed

➤ Forget grids?

What the future could look like?

➤ A virtual power plant connects and aggregates distributed energy resources

What the future could look like?

➤ A platform for Internet of things connects and manages a wide range of both generation and end-use technologies in order to enable collaboration at the level of households, communities and cities.

National Universit of Singapore

Legacy grids anticipate distributed generation

- ➤ Singapore's energy transition
 - In 2014, intermittent generation sources integrated with energy storage are not deemed as intermittent if they are dispatchable.
 - In 2015, energy storage is allowed to participate in the regulation reserve market.
 - In 2016, the regulator launched an energy storage test-bed to study grid-level storage applications.
 - In 2018, full retail contestability in the electricity market

Conventional on-demand power from centralised plant clusters

In 2017, 97% of electricity from a handful of CCGT/co-gen/tri-gen plants

Fossil fuel generating capacity (03/17)

Licensed: 13'348MW

Source: EMA (www.ema.gov.sg)

Weather-driven power from dispersed small-scale PV plants (~2'000 sites)

Installed PV:	136MWp
Backlog PV:	>100MWp
Central:	442
East:	379
NE:	491
North:	239
West:	405
Total sites (30/06/17):	1'956

Nordic experience from central to distributed generation

➤ Denmark's energy transition: CHP heat/power + decentralised solutions

National University of Singapore

New roles for market participants

Institute

> Provide energy services beyond electricity as a commodity

Why is this market new?

➤ So far ...

SUPPLY = DEMAND

While, with smart grid solutions...

SUPPLY ≠ DEMAND

Value reflective pricing

Generation

Load

Focus on the broader, overall system value or customer value?

> Rewarding distributed energy resources requires a detailed analysis of the various value components.

Financial Energy services Avoided capacity Grid Support Additional benefits Generation ■ Reactive power ■ Energy ■ Fuel price hedge ■ Grid security ■ Tranmission and ■ Voltage control ■ Environmental/ Transmission and ■ Market price distribution losses distribution carbon emissions ■ Frequency support ■ Socio-economic Operating reserves development

Retail electricity prices can be refined along time and location. Granularity Seasonal time-of-Daily time-of-use Intra-daily time-of-use Time -Flat tariff Real-time pricing use (summer/winter) (weekday/weekend) (peak/off-peak hours) Energy **Expected system Expected system** Real-time Time -No demand charge **Customer peak** coincident peak, coincident peak, Demand coincident peak annual monthly Locational marginal **Nodal disaggregation** Single price Zonal disaggregation

Notes: Tx = transmission; Dx = distribution; LMP = locational marginal price.

Location

STUDIES

INSTITUTE

LMP +Tx/Dx losses

price (LMP)+Txlosses

Source: IEA, 2017

Germany's cautionary tale

➤ Renewables push down the electricity market prices and make higher price conventional plants lose viability

California's duck curve

➤ Baseload generators displaced during peak demand hours, then rapid ramp up in late afternoon and ramp down in the morning- need to ensure sufficient reserves, esp. the fast response regulation reserves.

China's energy efficiency plan

- Coupling power and heat

- ➤ The central government plans to exploit low-grade waste heat through district heating to replace more than 50 million tons of coal consumption associated with heating area of more than 2 billion m² by 2020.
- ➤ Heat capacity from co-generation excess heat is equivalent to around 80% of the 2015 heat demand in northern district energy networks.

Issues we need to address an intelligent market design

- ➤ While the context may vary, some questions are universal:
- How to guarantee **a fair access** to the market?
- How to integrate **prosumers** in existing market?
- How to limit the **market power** of existing entities?
- How to encourage investments in cleaner technologies?
- How to bill the customers involved in **Demand Response** programs?
- How to bill the ancillary services provided by **storage assets**?

Thank you!

Email: Yang_liu@nus.edu.sg

Tel: +65-65161456

National University of Singapore

http://www.esi.nus.edu.sg

29 Heng Mui Keng Terrace Block A, #10-01 Singapore 119620

