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Smart grid= grid + digital ?

» Sub-Saharan Africa is connected — not to electricity, but to digital networks
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System integration is essential

» Smart grid means a digitally-enhanced, multidirectional and integrated
system.
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More renewables, more flexibility

» Turning intermittent energy into baseload power
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Demand response enabling system wide flexibility

> Ability to shift demand= ability to reduce or avoid costs (Global demand response
programmes can provide 185 GW of flexibility and avoid USD 270 billion of
investment in new electricity infrastructure. )
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Presenter
Presentation Notes
Digitally-enabled demand response shifts electricity consumption to those hours with a surplus of supply.  Demand response programs – in buildings, industry and transport - could provide 185 GW of flexibility,  and avoid USD 270 billion of investment in new electricity infrastructure. 
The reason for this is that electricity is more expensive at peak periods when demand is high. And infrastructure is sized for the peak demand. 

Passenger EV sales have been growing rapidly in North America, Europe, China and other regions since 2012, with a cumulative 2 million plug-in passenger cars and light utility vehicles sold by the end of 2016 (IEA, 2017e). This has added a substantial amount of flexible load and storage to the system.
A plug-in hybrid electric vehicle (PHEV) is a hybrid electric vehicle whose battery can be recharged by plugging it in to an external source of electric power as well by its on-board engine and generator.

EVs are currently more expensive than comparable ICE vehicles in all regions (IEA, 2017e). Battery costs are the key driver of higher EV costs, making up more than half of the total purchase cost in all regions (IEA, 2017e). Battery costs have declined from over USD 900/kWh in 2009 to under USD 300/kWh since 2014 and levelled off somewhat through to 2016 (US DOE, 2017). Increases in both numbers of units produced and battery pack size have the potential to further reduce battery costs, and further cost reductions are expected into the future 


The future is distributed

> Forget grids?
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What the future could look like?

» A virtual power plant connects and aggregates distributed energy resources
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What the future could look like?

» A platform for Internet of things connects and manages a wide range of both
generation and end-use technologies in order to enable collaboration at the level
of households, communities and cities.
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Legacy grids anticipate distributed generation

» Singapore’s energy transition

= In 2014, intermittent generation sources integrated with energy storage are not deemed
as intermittent if they are dispatchable.

= In 2015, energy storage is allowed to participate in the regulation reserve market.

= In 2016, the regulator launched an energy storage test-bed to study grid-level storage
applications.

= In 2018, full retail contestability in the electricity market
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Nordic experience from central to distributed generation

» Denmark’s energy transition: CHP heat/power + decentralised solutions
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New roles for market participants

» Provide energy services beyond electricity as a commodity
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Why is this market new?
» Sofar ...

SUPPLY = DEMAND

While, with smart grid solutions...

SUPPLY # DEMAND

Value reflective pricing
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Focus on the broader, overall system value or
customer value?

» Rewarding distributed energy resources requires a detailed analysis of the various
value components.

Avoided capacity Grid Support m Additional benefits

m Energy m Generation m Reactive power m Fuel price hedge m Grid security
m Tranmission and m Transmission and m Voltage control m Market price m Environmental/
distribution losses distribution m Frequency support carpon emmspns
: m Socio-economic
m Operating reserves development

> Retall electricity prices can be refined along time and location.

— Granularity *

Time - Flat tariff Seasonal time-of- Daily time-of-use Intra-daily time-of-use
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Germany’s cautionary tale

» Renewables push down the electricity market prices and make higher price
conventional plants lose viability
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California’s duck curve

» Baseload generators displaced during peak demand hours, then rapid ramp up in
late afternoon and ramp down in the morning- need to ensure sufficient reserves,
esp. the fast response regulation reserves.
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China’s energy efficiency plan

- Coupling power and heat

» The central government plans to exploit low-grade waste heat through district
heating to replace more than 50 million tons of coal consumption associated with
heating area of more than 2 billion m? by 2020.

» Heat capacity from co-generation excess heat is equivalent to around 80% of the
2015 heat demand in northern district energy networks.
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Issues we need to address an intelligent market design

» While the context may vary, some guestions are universal:

- How to guarantee a fair access to the market ?

- How to integrate prosumers in existing market ?

- How to limit the market power of existing entities ?

- How to encourage investments in cleaner technologies ?

- How to bill the customers involved in Demand Response programs ?
- How to bill the ancillary services provided by storage assets ?
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Thank you!

Email: Yang_liu@nus.edu.sg
Tel: +65-65161456

National University of Singapore
http://www.esi.nus.edu.sg

29 Heng Mui Keng Terrace
Block A, #10-01
Singapore 119620
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