iea-isgan.org

ISGAN – Annex 3

Smart grid evaluation toolkit

Prof. Fabrizio Pilo, Italy

Matteo Troncia, Italy

Joint ISGAN-MI IC#1 event International Smart Grid Action Network

Vancouver, Canada, 27-29 May 2019

27-29 May 2019

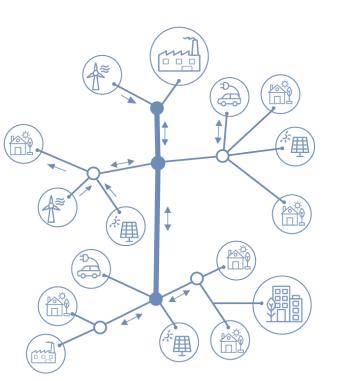
Joint ISGAN-MI IC#1 event

2

Context and motivation

Smart grids: impacts span over the power system borders

Novel features and enabled services will produce relevant socio-economic impacts


Impact characteristics:

- Wide range impacts
- Indirect/side effects
- Intangible impacts
- Lack of data availability
- Data uncertainty

Implications:

- Not only monetary aspects are of interest
- Identify the impact allocation is difficult
- Quantify all impacts is not possible
- Strategic decision making is under uncertainty

Smart grid planning calls for effective tools for complex decision-making problems

Objective:

3

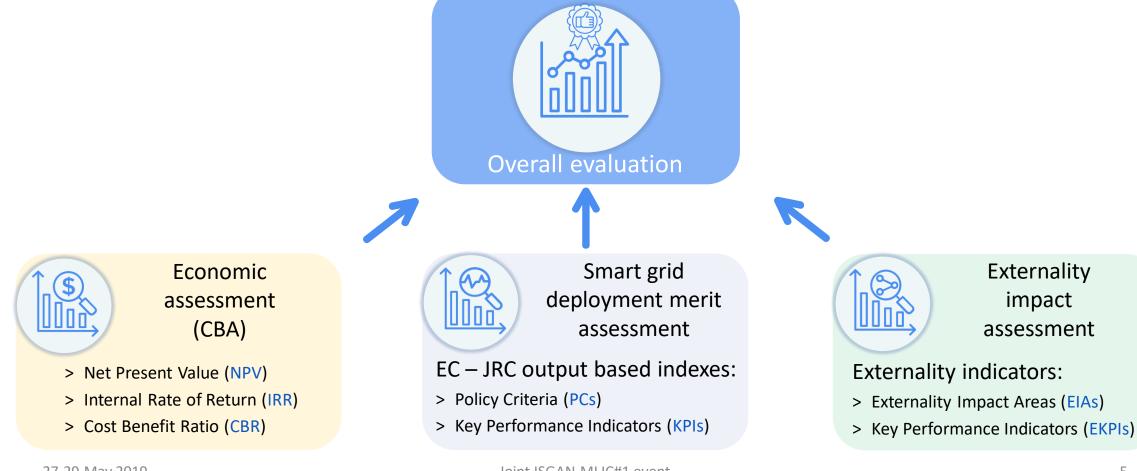
Provide a reliable support tool for orienting the investments and the regulatory policies on smart grids

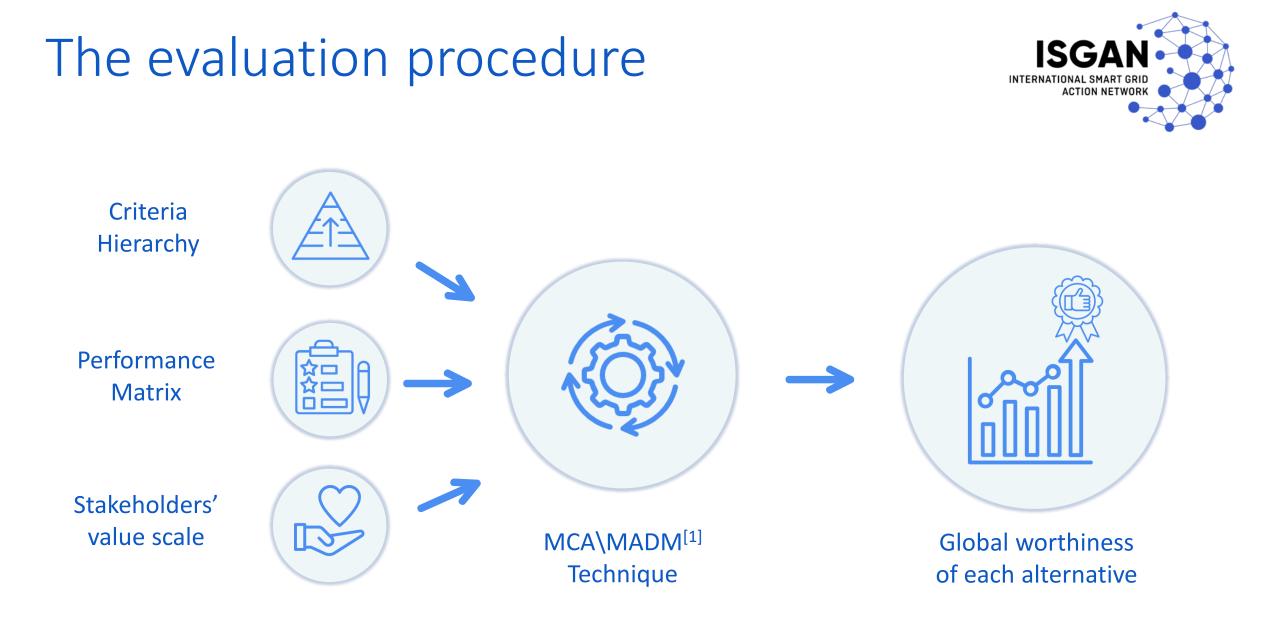
ISGAN smart grid evaluation toolkit

ISGAN smart grid evaluation toolkit

- Decision support tool for evaluating smart grid projects
- Combines Cost Benefit Analysis (CBA) and Multi-Criteria Analysis (MCA)
- Allows an output-based assessment of smart grid initiatives based on an automated procedure
- Considers monetary and non-monetary impacts
- Includes the stakeholders' view in the analysis
- The evaluation can be based on synthetic weights

Smart grid evaluation toolkit


© 2018 ISGAN



Overview of the assessment

The main goal is to identify the best smart grid option Complies with international guidelines on project assessment (i.e. EU Joint Research Centre - JRC) Evaluates the options on 3 different areas

[1] Multi - Criteria Analysis \ Multi-Attribute Decision Making

ISGAN smart grid evaluation toolkit

Planning activity management

Choose planning activity: TestCaseB01_280319 TestCaseC01_280319 TestCaseC01_280319 TestCaseC02_280319		←	Load an existing planning activity
TestCaseC03_280319 TestCaseDieci_290319 TestCaseDieci_290319_2 pa1 Test06052019_AEIT Test06052019_AEITb	Load Delete	←	Delete an existing planning activity
New planning activity Clone planning activ Create a new planning activity:	Templates: • Empty	←	Create a new evaluation process
Create	○ Template Test ○ StorageADN	←	Clone an existing planning activity

ISGAN smart grid evaluation toolkit

Welcome, UserZero. Log out

Current PA: Test Storage Change PA

Planning Activity Overview

Structural	parameters		Download planning	activity
	•		Help	
Details				
Description:			 Download templates 	
test case 01 - it concerns the https://doi.org/10.23919/AE	e active network distribution planning with IT.2018.8577399	n storage devices	 Help palette Manage custom palette 	
Insert description of planning a	ctivity.		Todo	
Tags:			Load from file or complete the following steps:	
storage, ADN,				
Insert lags of planning activity	separated by comma.		 Structural parameters 	
🗹 Economic criteria			Branch weights Economic criteria weights Performances on economic criteria	
⊠Net Present Value:	🗆 Internal Rate of Return:	🗆 Cost-Benefit Ratio:	 Performances on smart grid KPIs 	

🖂 Smartgrid criteria

КРІ
Operational flexibility
Duration of interruptions
Voltage quality
Frequency of interruptions
System stability
Network losses
A A
Select kpi 🗸 🗸 Add
DERs capacity Maximum power injection Energy not withdrawn from DERs
5
]

Dashboard of the evaluation activity

- Simple user interface that guide the user during the evaluation process
- No specific expertise is required
- Only output based data on projects and stakeholder view information is demanded

The user can

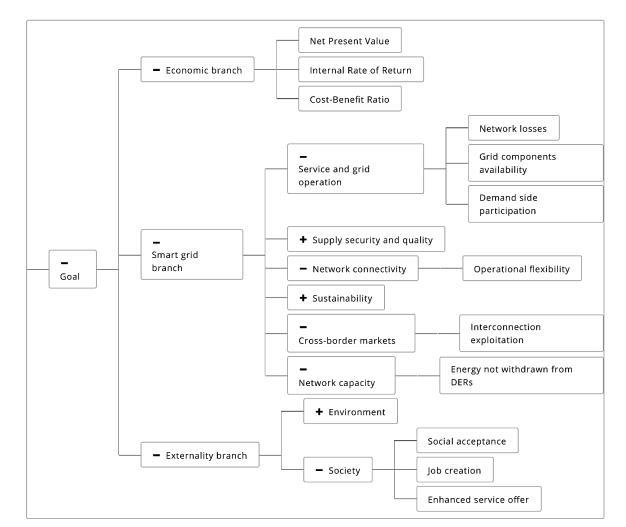
- Select and/or define the evaluation criteria
- Define the number of planning alternatives
- Check the evaluation progress
- Save the defined structure
- Watch the defined criteria tree
- See the evaluation result

Building the tree of criteria

The evaluation criteria can be selected from the default palette and the custom palette Tree of criteria is interactive and responsive Gives an overview of the whole hierarchy

🖂 Economic criteria

☑ Net Present Value:


🗆 Internal Rate of Return: 🛛 🗆 Cost-Benefit Ratio:

🖂 Smartgrid criteria

Criterion			КРІ
Network connectivity			Operational flexibility
Supply security and quality			Duration of interruptions
Supply security and quality			Voltage quality
Supply security and quality			Frequency of interruptions
Supply security and quality			System stability
Service and grid operation			Network losses
	Μ	•	► H
Network capacity 🔷 🗸			Select kpi 🗸 🗸 Add
		DER	Rs capacity
Externalities criteria		Maximum power injection	
		Energy not withdrawn from DERs	
Imber of alternatives:			5

Tree of criteria

Scoring of the alternatives

Performances on smart grid KPIs

Quantitative scoring

Quantitative scoring: Choose file No file chosen

Done

Qualitative scoring

Service and grid operation

Alt1	Alt2	Alt3
1	Select a value 🗸 🗸	1
1	9	1
1	8	1
	7	
	6	
	5	
	4	
	1	1 Select a value 1 9 1 8 7 6 5 4

The evaluation of each criterion can be based on

• Quantitative performance indicators

by loading spreadsheets X

INTERNATI

 A qualitative assessment of the performances based on the AHP^[1] pairwise comparison

[1] T. L. Saaty, 'How to make a decision: The analytic hierarchy process', *Eur. J. Oper. Res.*, vol. 48, no. 1, pp. 9–26, Sep. 1990.

or

Weights of the criteria can be assigned manually

by attributing the local priority vector or by using the Saaty's preference matrix^[1]

		Main criteria weights	
conomic branch: 1,1741	Smart grid branch: 0,4013	Externality branch: 0,4246	
Done Cancel			

Matrix weights

First level

Society Environment Society Environment

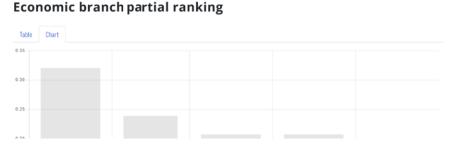
Or can be calculated according to selected algorithms on the basis of the performances of the alternatives

Weights algorithm: Hybrid entropy weights	\sim
Weights algorithm type: Product ~	
Weights algorithm alpha: 0,5]

Weighting algorithms:

- Entropy weights ٠
- Standard deviation weights ٠
- Ideal Point weights ٠
- Hybrid weighting ٠

[1] T. L. Saaty, 'How to make a decision: The analytic hierarchy process', Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, Sep. 1990.


Results of the evaluation

Overall ranking fo synthetic weights

Table Chart

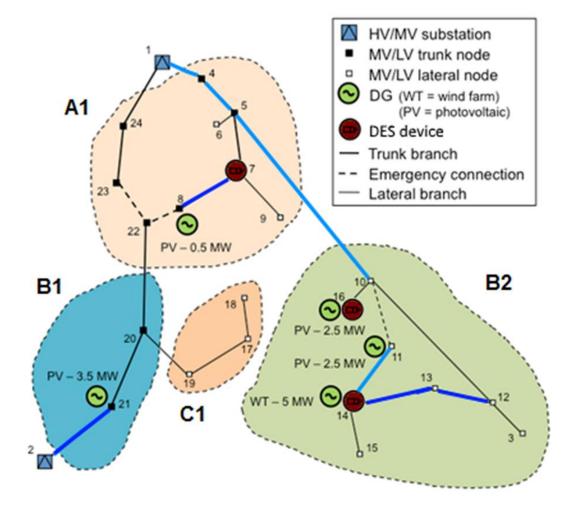
	Alternatives	Scores
1	alt5	0.2698
2	alt3	0.2419
3	alt4	0.2392
4	alt2	0.2224
5	alt1	0.0267

Each alternative obtains an overall score which depends on its merit on the evaluation criteria The Best alternative has the Highest score

INTERNAT

ACTION NET

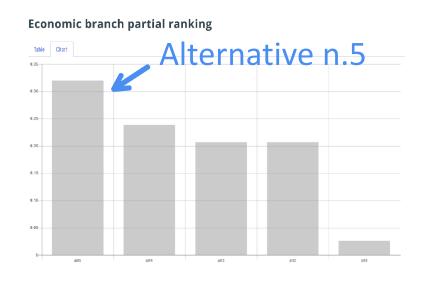
Outcome:


- Overall ranking according to subjective weights
- Overall ranking according to objective weights
- Overall ranking according to combined weights
- Partial ranking according to each branch
- Flat weights for the terminal criteria
- Stability index of the first position in the ranking

Brief and extensive information for the decision maker

27-29 May 2019

Case study: distribution grid planning of a MV rural grid

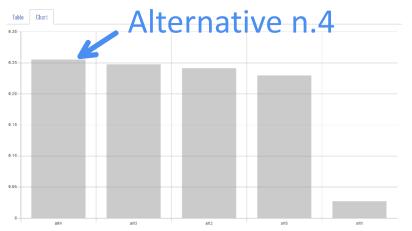


Evaluation of several Active Distribution Network (ADN) planning options devised by a multi-objective algorithm (NSGA-II)

Each considered planning option consists in:

- traditional network reinforcement
- siting and sizing of distributed energy storage (DES)
- Time horizon: 10 years
- Topology of the network is fixed
- $_{\circ}$ Load growth rate: 3% for each bus
- $_{\circ}$ $\,$ Operation is evaluated by a probabilistic load flow

Results for the case study



DES Topology information

Alt.	Bus equipped with DES	P _{DES} [kW]	E _{DES} [kWh]
A_1	No DES	0	0
A_2	7	100	100
A_3	14	200	400
A_4	16	100	100
A_5	14	100	100

Smartgrid branch partial ranking

ISGAN smart grid evaluation toolkit

The ISGAN smart grid evaluation toolkit:

- Provides a simple framework for project assessment with the aim to overcome the gap between users and tools
- Promotes data sharing about smart grid initiatives for improving the effectiveness of the assessment frameworks

The aim is to develop an

open structure for sharing data, point of views, and results build a collaborative community for promoting the smart grid development by supporting the strategic decision making of government bodies and companies

How to get it?

Request your invitation code by writing at: info.smartgrideval@gmail.com

Check your e-mail, in a while you will receive your personal invitation code

Go to the website: http://smartgrideval.infora.it/

Log-in in the website with username: smartgrideval and password: smartgrideval

Click on the Signup button

Fill the gaps in the Signup page

Click on the Signup button on the bottom of the Signup page

14

Registration completed, you can log-in with your credentials at: http://smartgrideval.infora.it/

iea-isgan.og

Thank you

A webinar on the ISGAN smart grid evaluation toolkit will be available soon...

Fabrizio Pilo, Italy

pilo@diee.unica.it

Matteo Troncia, Italy <u>matteo.troncia@diee.unica.it</u>

Image Credits

The graphics have been designed by composing the artworks of

Vectors Market

Nithinan Tatah

Iconcheese

Andrejs Kirma

from the Noun Project (https://thenounproject.com/).