August 28, 2013

Smarter & Stronger Power Transmission: Review of feasible technologies for enhanced capacity and flexibility

Transmission and distribution (T&D) systems are facing new challenges linked with the introduction in the generation mix of a progressively increasing share of unpredictable energy sources and variable generation from renewable energy sources (RES).

Changing patterns of demand that new types of load such as electric vehicles (EV) will introduce large and unpredictable fluctuations in the power balance as well as variations in voltage can jeopardize the quality and availability of power. The T&D system has to be stronger and smarter to provide the real-time flexibility needed to efficiently handle the new conditions. Investment needs in the power T&D infrastructure are large and require long term planning and deployment. The environmental concerns and public acceptance issues that often arise when constructing additional conventional transmission lines will require more efficient solutions with lower environmental impact.

This Discussion Paper from ISGAN Annex 6 Power Transmission & Distribution Systems Task 3 and 4 focuses on “Smarter & Stronger Power Transmission” and is a review of feasible technologies for enhanced transmission capacity and flexibility in terms of status and deployment. This includes both the primary AC and DC technology for the high voltage transmission grid as well as the information and communication technology (ICT) required to efficiently supervise and operate the power system. Focus is on the development of power electronics including flexible AC transmission (FACTS) and high voltage DC (HVDC), the standardization within ICT such as IEC 61850 and Common Information Model (CIM) in order to obtain vendor independent interoperability as well as the progress of wide area monitoring, protection and control (WAMPAC). The combination of smarter ICT applications together with power electronics such as FACTS and HVDC can be described as a digitalization of the power system operation offering the required flexibility. Most of the examples given are from the Nordic European power system, reflecting the participation of the authors from ISGAN Annex 6 Task 3 and 4, with additional input from North America and selected International case studies.

read more

April 15, 2013

The Role of Smart Grid Technologies as Enablers of Clean Energy Policies in Islands of Developing and Developed Countries

Addressed at high-level policymakers, this paper summarizes key messages from recent publications on sustainable energy systems in islands and remote territories.

The diversity of islands of developing and developed nations offers a unique opportunity to demonstrate how deploying large amounts of intermittent renewable energy sources (RES) within smart grid architectures tailored to local energy contexts can be a cost-effective complement, and even an alternative, to current fossil-fuel solutions.

This paper, authored by Annex 4: Synthesis Insights for Decision Makers, covers the following topics:

  • The energy supply challenges faced by islands
  • Ways in which renewable energy technologies can improve sustainable electricity supply
  • Ways in which smart grid technologies can help enable the integration of large amounts of intermittent RES
  • Lessons learned from demonstration projects in islands
  • The importance of island systems in the global context of clean energy systems in developing and developed countries.

read more

March 31, 2013

Smart Grid Project Catalogue: Part 1, By Project Main Application

The objective of the ISGAN global smart grid inventory is to help depict a global view of smart grid activities and investments to allow identification of remaining gaps along with opportunities for targeted collaboration or further investment by ISGAN Participants.

Development of the inventory followed the ISGAN framework of assessment, during which smart grid drivers and technologies were assessed by each ISGAN Participant based on their respective national-level priorities.

Information on ongoing and planned smart grid projects that respond to national-level priorities was then collected from each Participant as input to the inventory. The inventory, constructed in Microsoft Access and Excel, adopted the data fields and their organization used by the European Commission Joint Research Centre-Institute for Energy and Transport (JRC-IET) survey of smart grid projects with slight modifications. Harmonization of database content between the JRC-IET database and the inventory is readily achieved, while the inventory allows each ISGAN Participant to independently conduct query and analysis of smart grid projects.

Cataloguing of the projects in the inventory is presented in a two-part report. Part 1 organizes smart grid projects by each main application; whereas, Part 2 organizes the inventory projects by their contribution to policy goals. The “project main applications” and “policy goals” in the inventory are in close association with the “smart grid technologies” and the “smart grid drivers,” respectively, in the assessment framework. The latter two categories are more granular than their respective former categories; in other words, a main project application and a policy goal could encompass, respectively, a group of smart grid technologies and drivers. Project information presented in the two-part report was drawn from data call responses by the national experts and representatives of the ISGAN Participants, without any changes. This report presents 98 smart grid projects from 17 ISGAN Participants in the inventory, dated 28 March 2013. As the inventory is being continuously updated, the content of this report will necessarily change to reflect the current status of the inventory.

read more

March 13, 2013

Combined MC-CBA methodology for decision making on Smart Grid

The Discussion Paper analyses the weaknesses of the CBA and investigates the MCA approach. With the aim to outclass the CBA shortcomings, this discussion paper proposes to integrate the CBA into an MCA assessment framework. The proposed approach preserves the strengths of both CBA and MCA and identifies the best alternative according to its monetary and non-monetary performances. The MC-CBA methodology helps the decision maker identify the best Smart Grid investment option; the final aim is to provide a reliable support tool for orienting effectively the investments and the regulatory policies on Smart Grids.

Smart grid projects are responsible of wide range impacts, which span from the electrical power system to the entire society. In general, the investment projects are assessed with a Cost-Benefit Analysis (CBA), which requires quantifying the impacts for converting them in monetary terms. In the smart grid context, not all impacts are quantifiable and/or monetizable; therefore, the CBA lacks in describing completely the smart grid potential. With the aim to outclass the CBA shortcomings, this discussion paper proposes to integrate the CBA into a Multi-Criteria Analysis (MCA) framework. The combined approach preserves the strengths of both CBA and MCA and identifies the best alternative according to its monetary and non-monetary performances. Furthermore, the stakeholders’ point of view is directly collected and the preferences are explicitly related to the decision-making problem under analysis. To achieve a common smart grid assessment framework, the MC-CBA methodology relies on acknowledged guidelines on project analysis. The assessment approach described in this report decomposes the decision-problem by analysing the impacts in three main areas: the economic area, the smart grid development merit area, and the externalities area. The MC-CBA methodology helps the decision maker identify the best smart grid investment option; the final aim is to provide a reliable support tool for orienting effectively the investments and the regulatory policies on smart grids.

read more

February 28, 2013

SIRFN Draft Test Protocols for Advanced Battery Energy Storage System Interoperability Functions

Distributed Energy Resources (DERs) such as energy storage systems (ESS) when deployed at a large scale are capable of significantly influencing bulk and local power systems.

While in many cases the negative effects of uncoordinated DER have caused local and system-level challenges, with proper design and control, DER can effectively support the electric grid. DER with advanced control features have been shown to increase hosting capacity by providing voltage support in distribution circuits, supplying ancillary services such as voltage or frequency regulation.

New energy storage targets in Europe and California, energy storage regulations, along with new storage technologies are providing the foundation for massive deployment of energy storage resources. Large-scale storage is common for renewable energy smoothing, peak-shifting, and voltage support, while commercial and residential-scale systems are financially viable in many jurisdictions due to grid codes and other regulations. For instance, electricity prices in Germany are high enough that storing solar energy for use during peak price periods has made home ESS cost effective.

Further, the combination of solar photovoltaics (PV) and energy storage can generate additional value when interoperable grid-support (“advanced grid”) functions allow for intelligent control. In a position paper issued by the European Photovoltaic Industry Association (EPIA), decentralized storage and the ability for those devices to respond to commanded signals will “help support distribution grids operation – and even sometimes avoid costly grid reinforcements.” Widespread adoption of these functions could allow energy storage to remove some of the barriers to high-penetration PV and wind power.

Advanced DER grid functions are not the same across all countries and jurisdictions; and many regions do not have a defined certification procedure to validate the functionality of these devices. As a result, DER system vendors create different versions of their product’s software to be compliant with regional requirements. This adds cost and complexity to the design and certification processes. It also generates disparate testing methods and there is no common set of parameters that can be communicated to the DERs. If a single procedure was created that accounted for all the jurisdictional variations (e.g., a superset of the grid code discrepancies), a single document and procedure could be used to validate all grid code requirements. This is challenging because there are a large number of grid codes and technical rules—each with variations in the function definitions.

The development of an inclusive set of tests for grid support functionality has the potential to open markets for energy storage providers. Data collection redundancies are removed as well, thereby further reducing the overall cost of certification and deployment. Hence, harmonization and standardization of these advanced function tests would bolster the international market for energy storage systems and enable higher penetrations of renewable energy sources.

To accomplish this goal, the proposed “SIRFN BESS” protocol is inclusive of many technical rules and grid codes while being detailed enough for uniform results across laboratories, countries and, even, continents.

read more

February 28, 2013

Flexible Power Delivery Systems: An Overview of Policies and Regulations and Expansion Planning and Market Analysis for the United States and Europe

With the changing dynamics of electric grid systems around the world, decision-makers – both institutional and technological – are facing numerous new challenges to operating, planning, and expanding their systems.

New technologies are challenging conventional regulatory regimes and new policies and consumer demands are similarly challenging the currently available technologies. For example, as the demand for cleaner energy sources gains ground all over the globe, technological improvements are necessary to integrate large amounts of variable energy sources such as solar and wind into various electricity systems, while ensuring acceptable levels of reliability and security of the system. Similarly, as consumers engage more with electricity systems, demand profiles and consumer choice, among other demand-side elements, are also challenging our system, providing opportunities for demand-side management and related technologies. In this rapidly changing landscape, regulators and policy-makers must consider how consumer participation and new technologies interact with the market place.

This discussion paper from ISGAN Annex 6 Power Transmission & Distribution Systems Tasks 1 and 2 focuses on achieving flexible power delivery by examining the policies and regulations, as well as expansion, planning, and market analysis for the United States and Europe. This review looks at how policies and regulations have changed to accommodate new developments in the operation, planning, and market areas of each grid system. Additionally, it highlights certain efforts undertaken to better understand and implement the policy and regulatory changes in these processes as both the United States and Europe work towards achieving a modernized grid system, specifically including the increased deployment and use of smart grid technologies, e.g., synchrophasor measurement technologies, net metering, distributed generation, energy storage, advanced metering infrastructure.

About ISGAN Discussion Papers: ISGAN discussion papers are meant as input documents to the global discussion about smart grids. Each is a statement by the author(s) regarding a topic of international interest. They reflect works in progress in the development of smart grids in the different regions of the world. Their aim is not to communicate a final outcome or to advise decision-makers, rather to lay the ground work for further research and analysis.

read more