June 15, 2018


System Efficiency

In the era of deployment of a smarter and more sustainable energy system, an overall perspective of system efficiency becomes increasingly important.

System efficiency is a multifaceted concept, which in the present document is broken down in the dimensions of carbon dioxide (CO2) emissions, energy and economic efficiency.
In order to improve the efficiency of a given system there are a number of available solutions at the disposal of policymakers and market actors. In this work, five action areas have been chosen and defined – multi-energy systems, electric storage, electric mobility, demand side management and automation & sensor technologies – and a review of activities and initiatives currently underway in several countries has been presented.
The efficiency measures and indicators identified in this report are key for bringing about the vision of an environmentally friendly and economically profitable electrical energy system, although some alternatives are not yet at a stage where they could be readily deployed in a systematic or widespread manner. In these cases and depending on the specific circumstances, regulatory policies and support measures can provide guidance and sustenance to overcome the uncertainties of future developments and promote potentially promising solutions.


read more
share

May 12, 2017


Single Marketplace for Flexibility

To use this flexibility in a coordinated way, an ever closer cooperation between System Operators will be required. Several approaches for the coordinated use of flexibility for system balancing and congestion management are imaginable.

In this work, the concept of a single marketplace for flexibility is introduced. Based on the requirements for TSO-DSO interaction, the concept of a single marketplace for flexibility has been assessed. This assessment does not provide a comparison with other ways to ensure a coordinated use of flexibility, but it shows the strengths and weaknesses of a single marketplace for flexibility.

The single marketplace is a lean and transparent concept to deal with the procurement of flexibility, which could theoretically lead to an economical optimum for the entire system, while respecting technical boundary conditions. On the other hand, the marketplace will not function properly without sufficient flexibility offers, there is no practical experience with this concept and the ICT requirements for its implementation are challenging.


read more
share

Energy access constitutes one of the fundamental building blocks for economic growth, as well as social equity, in the modern world.

Access to sustainable energy is needed to achieve sustainable development. This paper serves as an input document to the global discussion on how to reach the UN goal of “Sustainable Energy for All”, by sharing case study knowledge in the field. The following topics are considered through the examination of several implemented cases from different parts of the world:

  • Analysis of the interaction between centralized grids and microgrids.
  • Analysis of stakeholder decision parameters for electrification through extension of the central grid or microgrids; such as distance from grid, economic feasibility and environmental sustainability.
  • Analysis of design differences and requirements for microgrids, based on intended purpose and the needs of the end customer.

It has been determined that good planning, appropriate requirements and clear regulations for microgrids limit the risk of stranded assets and enable better business cases for the involved stakeholders.


read more
share

A synchrophasor is a time-synchronized measurement of a quantity described by a phasor. Like a vector, a phasor is a complex number that represents both the magnitude and phase angle of voltage and current sinusoidal waveforms at a specific point in time. Devices called phasor measurement units (PMU) measure voltage and current, and with these measurements, calculate parameters such as frequency, real power (MW), reactive power (MVAR) and phase angle. Data reporting rates for these parameters are typically 30 to 60 records per second, and may be higher. In contrast, current supervisory control and data acquisition (SCADA) systems typically report data every four to six seconds – over a hundred times slower than PMUs.

Measurements taken by PMUs in different locations on the network are accurately synchronized with each other and can be time-aligned, allowing the relative phase angles between different points in the system to be determined as directly measured quantities. Synchrophasor measurements can thus be combined to provide a precise and comprehensive “view” of an entire interconnection, allowing unprecedented visibility into system conditions.

The number of PMUs installed worldwide, as well as the number and type of grid operations informed by PMU data and applications, have seen notable increases in recent years. The past six years have seen a significant increase in the number of PMUs installed across North America’s transmission grid, from fewer than 500 installed in 2009 to nearly 2,000 today. This rapid increase in deployment of PMUs was spurred by the 2009 American Recovery and Reinvestment Act (ARRA), which funded federal Smart Grid Investment Grants (SGIG) and Smart Grid Demonstration Projects (SGDP), with matching private funds. In Norway, responsibility for the deployment of PMUs has recently been assumed by the Transmission System Operator’s IT division, meaning that PMUs are becoming an integral part of the grid information infrastructure for system operations.


read more
share

June 6, 2016


Storage and balancing as key elements for future network planning and electricity markets design

The aim of this report is to analyze the flexibility contribution that identified resources could provide as a contribution towards the achievement of efficient and cost-effective dispatching of the electric system, in presence of an ever increasing penetration of Renewable Energy Sources (RES) which are characterized by a variable generation pattern.

Higher flexibility in network dispatching can be achieved either by increasing the deployment of bulk storage in the transmission network, or by widening the set of resources available as a base for energy balancing. The latter strategy could potentially be actuated by allowing reserve procurement across transmission operator jurisdictions.

In a European context this strategy would be referred to as trans-national balancing; and could also be relevant to procurement across different Regions and Balancing Authorities in North America. A further positive could be achieved through participation in the balancing mechanism from generators and loads located in distribution networks. Beyond supporting dispatching efficiency, these flexibility elements make it possible to deploy a sustainable expansion strategy of the trans-national transmission corridors, taking into account the current difficulties faced in achieving public consensus for the building of new overhead lines. This report illustrates the potential of these strategies by referencing the results achieved in a number of important and ongoing European research projects.


read more
share

August 17, 2014


TSO-DSO interaction

An Overview of current interaction between transmission and distribution system operators and an assessment of their cooperation in Smart Grids.

Evolutions in the grid operation sector will require an ever closer cooperation between Transmission System Operators and Distribution System Operators. The current interaction between TSOs and DSOs has been investigated for six specified grid operation challenges, and possible future ways of cooperation have been identified. Technical aspects as well as policy aspects have been taken into account.
The technical requirements for an evolved interaction between TSOs and DSOs can be met using available technology. However, several non-technical issues and points of discussion have been identified, of which some are related to the regulated environment grid operators are working in.


read more
share

February 28, 2014


The role and interaction of microgrids and centralized grids in developing modern power systems

A rapid expansion of the introduction of microgrids is underway universally, primarily to allow increased electrification in growing economies, but also to meet the need to reduce global CO2 emissions and to provide ancillary services to centralized grids.

Energy access constitutes one of the fundamental building blocks for economic growth, as well as social equity, in the modern world. Access to sustainable energy is needed to achieve sustainable development. This paper serves as an input document to the global discussion on how to reach the UN goal of “Sustainable Energy for All”, by sharing case study knowledge in the field. The following topics are considered through the examination of several implemented cases from different parts of the world:

  • Analysis of the interaction between centralized grids and microgrids.
  • Analysis of stakeholder decision parameters for electrification through extension of the central grid or microgrids; such as distance from grid, economic feasibility and environmental sustainability.
  • Analysis of design differences and requirements for microgrids, based on intended purpose and the needs of the end customer.

It has been determined that good planning, appropriate requirements and clear regulations for microgrids limit the risk of stranded assets and enable better business cases for the involved stakeholders.


read more
share

August 28, 2013


Smarter & Stronger Power Transmission: Review of feasible technologies for enhanced capacity and flexibility

Transmission and distribution (T&D) systems are facing new challenges linked with the introduction in the generation mix of a progressively increasing share of unpredictable energy sources and variable generation from renewable energy sources (RES).

Changing patterns of demand that new types of load such as electric vehicles (EV) will introduce large and unpredictable fluctuations in the power balance as well as variations in voltage can jeopardize the quality and availability of power. The T&D system has to be stronger and smarter to provide the real-time flexibility needed to efficiently handle the new conditions. Investment needs in the power T&D infrastructure are large and require long term planning and deployment. The environmental concerns and public acceptance issues that often arise when constructing additional conventional transmission lines will require more efficient solutions with lower environmental impact.

This Discussion Paper from ISGAN Annex 6 Power Transmission & Distribution Systems Task 3 and 4 focuses on “Smarter & Stronger Power Transmission” and is a review of feasible technologies for enhanced transmission capacity and flexibility in terms of status and deployment. This includes both the primary AC and DC technology for the high voltage transmission grid as well as the information and communication technology (ICT) required to efficiently supervise and operate the power system. Focus is on the development of power electronics including flexible AC transmission (FACTS) and high voltage DC (HVDC), the standardization within ICT such as IEC 61850 and Common Information Model (CIM) in order to obtain vendor independent interoperability as well as the progress of wide area monitoring, protection and control (WAMPAC). The combination of smarter ICT applications together with power electronics such as FACTS and HVDC can be described as a digitalization of the power system operation offering the required flexibility. Most of the examples given are from the Nordic European power system, reflecting the participation of the authors from ISGAN Annex 6 Task 3 and 4, with additional input from North America and selected International case studies.


read more
share
×