February 19, 2024


ISGAN Webinar: Aggregator in digitalised power systems

March 11, 2024, 14:00 CET - ISGAN Virtual Learning and ISGAN Working Group 6 invite you to an insightful webinar on the aggregator role in the upcoming digitalised power systems

Utilizing untapped Distributed Energy Resources (DERs) potential from customers in the distribution grid necessitates TSO-DSO-Customer coordination. Customers, who consume, store, or generate electricity, have shown attractive potential for ancillary services to power systems, but they still face challenges managing and marketing their flexibility in the energy market. Aggregators can facilitate these flexibilities as an intermediary by providing services to different power systems participants. This poses new challenges for monitoring, controlling, and coordinating customers’ and other market player’s needs.

This webinar aims to disseminate knowledge about aggregators in power systems, address the challenges encountered, both technical and non-technical, and share experiences from pilot projects. Participants will gain insights to apply and expand the impact of aggregator roles in the context of their own countries.

Speakers

Prof. Dr. rer. nat. Sebastian Lehnhoff

OFFIS

Marcel Otte

OFFIS

Dr.-Ing. Jirapa Kamsamrong

OFFIS

Annike Abromeit

EEBUS

Dr. Christian Kunze

Smart Innovation Norway

Moderates:

Dr. José Pablo Chaves Ávila

Comillas Pontifical University

Intended audience

Policymakers, TSOs, DSOs, NGOs, aggregators, governmental agencies, researchers, interested participants, students, etc.

Key messages

A regulatory framework with a clear definition of the aggregator role should be established in each country to enhance competitiveness, transparency, and societal welfare. Coordination approaches have to be established among aggregators, customers and grid operator with the focus on harmonised and interoperable solutions. Moreover, innovative approaches can be tested in demonstration and R&D projects with temporary regulatory changes and experiments (e.g. regulatory sandboxes), which can help to address the technical and non-technical challenges and support needed for the real deployment.


read more
share

January 25, 2024


Webinar – Approaching 5G-based Edge-Cloud Computing: Fostering the digital transition of the energy industry

February 22, 2024, 14:00 CET - ISGAN Virtual Learning and the Smart5Grid EU project invite you to an insightful webinar on modern digital telecommunication infrastructures for the energy industry

Modern digital telecommunication infrastructures will soon allow to be adjusted to the energy industry needs, providing the opportunity to implement edge computing trough cloud native applications.

To simplify the integration of the 5G digital telco infrastructures’ functionalities, increasing reliability and flexibility and reducing the latency, the Smart5Grid project propose the concept of Network Applications, together with a platform to automatically validate and verify those applications, fostering the creation of a new ecosystem of device virtualization experts.

Further reading: https://smart5grid.eu/dissemination-activities/brochures/

Intended audience

System Operators’ O&M experts, Technology experts and researchers, System integrators, Junior engineers and students, SMEs and technologic start-ups, device manufacturers for power plants automation (production, transmission, distribution)

Key messages

  • 5G offers the opportunity to interact with the Core Network to provide services
  • The complexity of such integration is a barrier, but Smart5Grid project proposes an innovative approach
  • We are able to provide a novel concept of Network Application to simplify the 5G complexity
  • Our set of tools can facilitate the access to this technology, fostering the creation of a new market segment for digital services: they are open for everyone who wants to learn more!

read more
share

July 29, 2023


WEBINAR: The grid planning process as an enabler for the energy transition

19 September 2023 14:00 CEST - ISGAN Virtual Learning invites you to this webinar on the grid planning process as an enabler for the energy transition

This webinar presents the challenges and solutions related to the long term grid planning process in order to have a process that is an enabler for the energy transition.

Different aspects are considered such as:

  • How to handle uncertainty, complexity, new risks and threats
    • what to consider and tools to use
  • What regulatory adaptations are required?
  • How to maintain a competent, capable and resilient workforce?
  • How to ensure efficient stakeholder interaction?

The webinar will also provide information about the knowledge sharing process.

Once registered, please check your email inbox and ensure that the invitation email is not marked as spam. Please add “isgan@comillas.edu” and “newsletter@iea-isgan.org” to your email whitelist.

Intended audience

The foreseen audience of this webinar are policy makers and stakeholders that impacts or are impacted by the grid planning process: Network operators (TSO/DSO), network planning engineers, researchers, regulators, etc.

Key messages

To overcome the complexities and uncertainties challenging the grid planning efficient, transparent and legitimate planning processes are required that are guided by sound principles and effective steering mechanisms.

It is critical that grid planning aligns with and acts as an enabler for the UN Sustainable Development Goals (SDGs) e.g. regarding scenarios utilized and grid development plans developed.

Existing cost-benefit analyses should be updated to properly capture the values of sufficient grid capacity and account for social, environmental, and resilience metrics.

Stakeholder interaction is needed at all levels of the grid planning process and in co-creating solutions, methods and tools that are needed to manage the various challenges.

Further information

Once registered, please check your email inbox and ensure that the invitation email is not marked as spam. Please add “isgan@comillas.edu” and “newsletter@iea-isgan.org” to your email whitelist.


read more
share

March 11, 2022


Webinar – Demonstration of close-to-real-time cross border flexibility market

21 April 2022 - 13:00 CEST - ISGAN Virtual Learning and the OSMOSE project invite you to this webinar concerning the experience on real-life demonstration activities.

The demonstration led by ELES in the OSMOSE project demonstrated the possibility of cross-border flexibility activation near-to-real time while comlying with grid limitations.

The near real-time potential of flexibility of hydro producers was explored: new tools were developed and live demonstrated to estimate their remaining flexibility 15 min before delivery time.

The processes implemented resulted in a real cross-border activation thanks to a selection of bids every 5 minutes and an activation signal sent every 10 seconds.

Join the webinar: 2022-04-21 at h 13:00 CEST (UTC+2)

Intended audience

Junior engineers; students; researchers; utilities; regulators; policymakers;

Further information

https://www.osmose-h2020.eu/ 


read more
share

March 11, 2022


Webinar – Smart management of the grid: exploiting line temperature and load forecasts

07 April 2022 - 13:00 CEST - ISGAN Virtual Learning and the OSMOSE project invite you to this webinar concerning the experience of the Italian demo of OSMOSE project.

The Italian demo of OSMOSE project tested different kinds of flexibility solutions in a 9 month long experimentation on a real HV grid portion: one of this is the flexibility from the grid itself! By exploiting accurate load and generation forecasts and cost effective Dynamic Thermal Rating solutions, a new Energy Management System was developed in order to detect and solve efficiently congestions in a 3 hours ahead horizon.

Join the webinar: 2022-04-07 at h 13:00 CEST (UTC+1)

Key messages

Capital-light investments and prediction algorhitm can enhance existing assets exploitation, becoming an efficient add-on to standard infrastructural planning of the grid.

Intended audience

TSOs, academy, industry

Further information

https://www.osmose-h2020.eu/ 


read more
share

March 11, 2022


Webinar – Demonstration of grid forming capabilities and synchronisation services

05 April 2022 - 13:00 CEST - ISGAN Virtual Learning and the OSMOSE project invite you to this webinar concerning off-the-shelf inverters interfacing energy storage systems.

The speakers will lead you towards two demonstration activities part of the OSMOSE project concerning off-the-shelf inverters interfacing energy storage systems with the power grid that can be turned into grid-forming units through suitable control upgrades in order to provide several services to the power system when it hosts massive amount of inverter-based renewable/stochastic generation. This is achieved thanks to the provision of synchronisation services superposed to classic regulation ones.

 

Join the webinar: 2022-04-05 at h 13:00 CEST (UTC+1)

Key messages

Within the context of service provision to future power systems hosting massive amount of inverter-based renewable/stochastic generation, 2 demonstrators have shown that grid forming capability can be provided from off-the-shelf equipment. One demonstration is based on a existing MW-class BESS connected to the medium voltage grid of the EPFL campus, while the other was built for the OSMOSE project by Ingeteam and connecter to the RTE network.

  • Both demos proved that grid forming capability can be provided without hardware oversizing, drawing out the most of existing equipment and therefore limiting the cost.
  • A hybrid system showed that supercapacitors installed on the DC side can handled all fast transients induced by grid forming control, therefore smoothing the battery output power.
  • The controls have been improved to behave properly in different grid conditions including harmonics and unbalanced conditions.
  • Multiservices provision can be done including grid forming capability taking into account the unit’s operational constraints.
  • Accurate distribution-class PMUs can be used to assess the performance of grid forming vs grid following units.

Intended audience

This webinar is mainly suitable for transmission system operators (TSO), energy providers, converter manufacturers and researchers in the field of power electronics and/or power systems stability and control. The content of the webinar is also comprehensible for students and engineers with some background in the power systems dynamics.

Further information

https://www.osmose-h2020.eu/ 

 


read more
share

January 5, 2022


Webinar – Contribution of the Osmose project to the enhancement of the IEC61850 standard: Improvement of the engineering process and storage data modeling

28 January 2022 - 13:00 - ISGAN Academy Webinars invites you to discover the contribution of the Osmose project to the enhancement of the IEC61850 standard: Improvement of the engineering process and storage data modeling

IEC standards are essential to ensure a successful industrial uptake of innovative smart grid solutions, however further research and innovation are requested in order to develop standardized descriptions of innovative components.

This webinar introduces the activities performed in the OSMOSE project regarding the engineering process and the functional tests performed on a dedicated demonstrator, based on the international standard IEC 61850.  It addresses in particular the following questions aspects:

  • Engineering process: configuration of the system, having devices from different manufacturers
  • Results of functional tests: validation of the system configuration.

Join the webinar: 2022-01-28 at h 13:00 CET (UTC+1)

Key messages

IEC standards are essential to ensure a successful industrial uptake of innovative smart grid solutions, however further research and innovation actions are requested in order to to develop standardized descriptions of innovative components.

The proposed webinar describe the activities performed by OSMOSE partners during the engineering process and functional tests performed in WP7.1 and the contributions that these activities had provided to the development of IEC 61850 standards.

Intended audience

Very large audience from TSO, to DSO, DER project developers, components manufacturers and selected and invited external stakeholders (e.g.: ENTSO-E; T&D Europe, etc.)

 


read more
share

November 10, 2021


Webinar – Optimizing the value of storage in power systems and electricity markets – the Smart4RES project

9 December 2021 - 12:00 CET - ISGAN Academy Webinars invites you to discover how optimize the value of storage in power systems and electricity markets - the Smart4RES project

ISGAN Academy invites to to the fifth episode of the Smart4RES webinar series. The webinar will provide an industrial view on the problematic and role of storage and a discussion on utilities needs and expectation through addressing the different Smart4RES use cases. The webinar will also focus on the joint optimization and dispatch of RES power plants and storage topic through different angles.
Finally, a presentation of the work done by ICCS will focus on the dispatch of RES and storage in isolated power systems including storage ancillary services and frequency security.

More info on www.smart4res.eu

Join the webinar: 2021-12-09 at h 12:00 CET (UTC+1)

Speakers

Maria Inês Marques

EDP NEW R&D

Simon Camal

MINES ParisTech/ARMINES – Centre PERSEE

Dimitrios Lagos

ICCS

 

 

 

 

Key messages

  1. Electrochemical batteries constraints and what EDP foresees for future (coupling storage and renewables).
  2. Importance of modelling in assets management, maintenance and lifecycle.
  3. Combination of technologies, presenting VPP to the market instead of physical ones.
  4. Multi-objective optimization for RES and storage offer interpretable results to stakeholders who want to participate in multiple electricity markets.
  5. Data-driven trading solutions simplify the modelling chain of trading decisions.
  6. Necessary ancillary services for storage systems in non-interconnected island systems with high RES penetration.
  7. Dispatch of thermal units, RES and storage in non-interconnected island systems considering the frequency security and the ancillary services provided by storage devices.

Intended audience

  • International
  • TSOs/DSOs
  • Storage system industrials
  • RES producers, aggregators, grid operators
  • RES traders
  • Academia, Regulation bodies

 


read more
share

October 18, 2021


Webinar – Dynamic Virtual Power Plant to combine flexibilities of dispatchable and non-dispatchable RES – the POSYTYF project

18 November 2021 - 15:00 CET - ISGAN Academy Webinars invites you to discover the Dynamic Virtual Power Plant (DVPP) concept under development by the POSYTYF project.

This webinar introduces the Dynamic Virtual Power Plant (DVPP) concept under development by the European Commission funded project POSYTYF, that aims to facilitate Renewable Energy Sources (RES) integration into the electrical network. After an overall project presentation, the webinar will introduce the proposed DVPP concept and detail the first project deliverable: the definition and specification of DVPP scenarios.

More info on https://posytyf-h2020.eu/

Join the webinar: 2021-11-18 at h 15:00 CET (UTC+1)

Key messages

  1. The new DVPP concept fully integrates the dynamic aspects at all levels: locally (for each RES generator), globally (for grid ancillary services and interaction with other neighbour elements of the grid) and economically (for internal optimal dispatch and participation to electricity markets)
  2. A DVPP is a set of Renewable Energy Sources (RES) along with a set of control and operation procedures. This means methodologies for:
    • choosing the participating RES, optimal and continuous operation as a whole (especially in case of loss of natural resources – e.g., wind, sun – on a part of the DVPP),
    • regulation (in the dynamic sense) to ensure local objectives for each generator,
    • participation to ancillary services of the DVPP as a unit and to diminish negative effects of interaction with neighbour dynamics elements of the power system,
    • integration in both actual power systems scenarios (with mixed classic and power electronics-based generation) and future ones with high degree of RES penetration.

Intended audience

  • Power system engineers, from students to senior experts.

 

Speakers

Bogdan Marinescu

Ecole Centrale Nantes

Oriol Gomis Bellmunt

Universidad Politecnica de Catalunya

Carlos Collados Rodriguez

Universidad Politecnica de Catalunya

 

Speakers Bio

Bogdan Marinescu was born in 1969 in Bucharest, Romania. He received the Engineering degree from the Polytechnical Institute of Bucharest in 1992, the PhD from Université Paris Sud-Orsay, France in 1997 and the “Habilitation à diriger des recherches” from Ecole Normale Supérieure de Cachan, France in 2010. He is currently a Professor in Ecole Centrale Nantes and LS2N laboratory where he is the Head of the chair “Analysis and control of power grids”  (2014-2024) and the Coordinator of the European project POSYTYF (Research & Innovation Action, 2020-2023). In the first part of his carrier, he was active in R&D divisions of industry (EDF and RTE) and as a part-time professor (especially from 2006 to 2012 in Ecole Normale Supérieure de Cachan). His main fields of interest are the theory and applications of linear systems, robust control and power systems engineering.

Oriol Gomis-Bellmunt received the degree in industrial engineering from the School of Industrial Engineering of Barcelona (ETSEIB), Technical University of Catalonia (UPC), Barcelona, Spain, in 2001 and the doctoral degree in electrical engineering from the UPC in 2007. In 1999, he joined Engitrol SL where he worked as Project Engineer in the automation and control industry. Since 2004, he has been with the Electrical Engineering Department of the UPC where he is Professor and participates in the CITCEA-UPC Research Group. He is involved in a number of research projects in national and international consortiums (medium-long term research oriented) and technology transfer projects with several manufacturers, operators and developers worldwide (short-term research and practical application). His research interests are focused on the understanding of modern power systems, based on power electronics (HVDC, FACTS, energy storage and renewables) and grid integration of renewable energy, especially onshore and offshore wind and solar photovoltaics. Since 2020, he is an ICREA Academia researcher. Since 2021, he is IEEE Fellow.

Carlos Collados-Rodriguez received the Bachelor’s degree in Energy Engineering and the Master’s degree in Industrial Engineering from the Technical University of Catalonia (UPC), Barcelona, Spain, in 2014 and 2017 respectively. He joined CITCEA-UPC research group in 2013, where he is currently pursuing the Ph.D. degree in Electrical Engineering. His research interests include power converters, HVDC systems, grid integration of renewable energy and power system analysis, especially in power-electronics-dominated power systems.

Readings

  1. B. Marinescu, O. Gomis-Bellmunt, F. Dörfler, H. Schulte, L. Sigrist, Dynamic Virtual Power Plant: A New Concept for Grid Integration of Renewable Energy Sources, https://arxiv.org/abs/2108.00153.
  1. Deliverable 1.1 when publicly released: Definition and specification of Dynamic Virtual Power Plant (DVPP) scenarios.

read more
share

February 6, 2020


Webinar: The need to model coupled energy networks to transition to a decarbonized future

The coordination between planners and operators of coupled energy systems will allow the further integration of renewable energy sources in the electricity network by storing energy in fuel form over long periods of time using power-to-gas, the recovery and more efficient use of heat, and the decarbonization of industrial processes and transportation modes that can’t be electrified. Energy networks, such as electricity grids and natural gas pipeline networks, have traditionally been planned and operated independently. In order to enhance the integration and coordination of different energy networks, they must be planned and operated in coupled ways. Different energy networks have historically been and are still modelled by different tools.

27 Feb 2020 @ 14:00 CET

Duration: 1h

In this webinar it will discuss the need to model coupled energy systems in a single framework and we will introduce encoord’s Scenario Analysis Interface for Energy Systems (SAInt), a software application to model, plan, and operate coupled energy networks.

 

Dr. Carlo Brancucci                Dr. Kwabena Pambour


read more
share

×